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Abstract

We have constructed extensions to the capabilities of the dynamic Lagrangian solid
mechanics code EPIC ([10, 11]) to enable basic h-adaptivity on a limited range of
problems. The indicators for adaptive refinement include a feature indicator based
on relative velocity, a flux jump indicator, hybrid indicators and a stress recovery
indicator. We use this capability to test different measures of solution quality and
adaptive refinement schemes on a benchmark Taylor anvil test problem.

1 Introduction

Hypervelocity impact simulations present very unique and formidable computational
challenges due to the close coupling that occurs between the transport processes and
material constitutive behavior. Traditional approaches for solving these types of prob-
lems, including Eulerian and Lagrangian methods, have not proven to be entirely suc-
cessful when applied over a wide range of conditions. For example, Eulerian methods
can easily handle large material distortions, but fail to accurately model interface and
contact conditions. Lagrangian techniques, on the other hand, can resolve contact
problems very precisely, but cannot handle excessive material distortion. We investi-
gate here the use of local adaptive refinement of the finite element meshes involved
to improve the quality of the simulation as the mesh deforms. Central to effective
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use of this technique is the use of effective refinement indicators, adaptation strategies
and infrastructure capable of supporting dynamic creation and deletion of elements.
We develop and test some representative indicators of solution quality and adaptive
refinement strategies.

While the literature on computational impact simulations is vast and there are
several comprehensive reviews (see for e.g. Anderson and Bodner [2], Benson[7] for
reviews), the use of solution adaptive meshing in these problems is a recent idea. Such
a strategy can be seen for example in the recent work of Camacho and Ortiz [12, 13],
and Espinosa, Zavatieri and Enmore [9].

2 EPIC code enhancements

The EPIC (Elastic Plastic Impact Calculations) code developed by Johnson et al.
[10, 11] uses an explicit Lagrangian finite element formulation. The code has been
extensively applied and periodically upgraded over the last two decades. The code
is thus now well tested and its capabilities and limitations well known. Access to
source code, a simple data structure and robust computational algorithm make it
an appropriate choice choice for the preliminary studies of solution adaptive meshing
undertaken here.

The equations of motion are integrated directly without forming stiffness matri-
ces. Using lumped masses and initial velocities and displacements, the computation
proceeds by computing element strains and stresses, corresponding nodal forces and
accelerations followed by an integration of the equations of motion to compute next
time-step velocities and displacements. Complex non-linear constitutive models and
equations of state are easily incorporated in this cycle. Moving slide lines are used to
account for contacting surfaces. Failed elements are removed from the simulation in a
process called “erosion”.

2.1 Adaptive Methods Infrastructure

The first challenge in using solution based adaptivity to improve finite element codes
is the creation of a data structure capable of supporting the creation and deletion of
new elements. The EPIC code and most codes designed for simulation of hypervelocity
impact include the capabilities of element erosion and re-zoning. These features form
the basis for the extensions we provide for automatic element creation and deletion.
We use the ability of the code to exclude elements from a simulation, to delete elements
that are marked for refinement. We add new elements and nodes to the bottom of the
list of existing elements and nodes.While this suffices for the preliminary work described
in this report, support of efficient solution-adaptive codes will require a dynamic data-
structure with the ability to allocate and deallocate memory as needed. Further, the
tree structure implicit in many modern implementations of adaptive refinement will
have to be extended to implement unrefinement. This latter capability is significant
for wave propagation type problems.
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2.2 Element/Node Connectivity and Neighbor Data

Adaptivity and error estimation require frequent reference to information from neigh-
boring elements. The EPIC code was augmented to provide this functionality. Ad-
ditional data structures were created to store lists of elements associated with each
node. The neighbors of an element can be computed efficiently from this information.
The refinement process utilizes the neighbor information to propagate the refinement
to produce conforming meshes, while the error estimators use it to evaluate quanti-
ties like the jump in normal stresses across the inter-element boundary of neighboring
elements.

2.3 Grid Transfer Operators

Simple interpolation schemes are used to assign initial values for the various nodal and
element quantities to new nodes and elements created. These interpolation routines
are part of the re-zoning capability of the EPIC code. Since new elements are created
by splitting old elements they inherit all element level state variables from the parent
element. Nodes derive their state variables from parent elements or nodes.

3 Error Indicators

Solution adaptive meshing implicitly demands some measure of solution quality. A
satisfactory measure is essential for developing a new mesh that will better meet the
goals of the analyst. There has been tremendous amount of research on developing
such error estimators. Notable among these efforts has been the work of Babuska,
Bank, Oden, Zienkiewicz, and their coworkers [5, 4, 3, 17]. The research effort to
this date has been primarily directed at elliptic or steady state problems. There are
few estimators directed at transient non-linear problems of the type described here.
Further, we need estimators that can be easily integrated with the explicit integration
type solution methods primarily used in computational impact simulations. In the area
of impact simulations, the two categories of indicators that have been looked at have
been either primarily geometrical measures like aspect ratios of elements or values of
state variables like plastic strain. We consider here some classes of that address both
the geometric difficulties encountered and the finite element approximation error.

3.1 RVS indicator

The first refinement indicator we implement is based on physical reasoning. Large and
rapid mesh deformation is a primary difficulty in Lagrangian impact simulations and
can cause a breakdown in the computations or large errors. We may try to avoid such
large mesh deformations by refining the mesh appropriately. If we compute a relative
velocity of the nodes of an an element and sum it up for each element then this will
serve as a simple measure to identify local mesh deformation. For the typical element
JKL (see Fig. 1) define

RVJK =
√

(vKx − vJx)2 + (vKz − vJz)2 (1)
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Figure 1: Sample element and velocity vectors of nodes

RVKL =
√

(vLx − vKx)2 + (vLz − vKz)2 (2)
RVLJ =

√
(vJx − vLx)2 + (vJz − vLz)2 (3)

RV S = RVJK + RVKL + RVLJ (4)

The quantity RVS can be used as an indicator of evolving mesh deformations. However,
it is a purely geometric indicator and has no systematic connection to the error in the
underlying computations. This indicator is also similar in spirit to indicators chosen
by Ortiz et al. [12] and Batra et al. [6].

3.2 Flux-jump Based Indicator

In any C0 finite element simulation the discretization error will cause the inter-element
fluxes to be discontinuous. Conversely one may use this inter-element flux discontinuity
as an indicator of the error in the simulation. A major component of the error residual
[3] does indeed consist of appropriately distributed jumps in the normal traction at
each inter-element boundary.

We compute for each element and it’s three neighbors the stresses normal to the
boundary and designate them σL and σR respectively (see Fig. 2). We then compute
the jump [σn] in these stresses and its norm ||[σn]||∂Ωe according to

[σn] = σL − σR (5)
||[σn]||∂Ωe =

∫
∂Ωe

[|σn]ds (6)

This is then distributed equally to each element sharing the edge. While this indicator
may correlate well with the finite element approximation error it does not predict the
onset of large mesh deformation that corrupt the Lagrangian simulations of impact
phenomena.
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Figure 2: Quantities involved in flux jump computation

3.3 Hybrid Indicators

In these indicators we attempt to combine the attributes of the two previous indicators
using appropriate scaled and weighted combinations to derive new hybrid estimators.

1. Additive Combination In the first combination we obtain the refinement in-
dicator for element Ωe using a linear combination of the two previously defined
indicators RV Se and ||[σn]||∂Ωe ,

He = α
RV Se

maxe{RV Se} + β
||[σn]||∂Ωe

maxe{||[σn]||∂Ωe
} (7)

where α, β are empirically chosen scalars and the maximum values over the entire
grid are used for normalization. The simplest choice of the scalars is α = β = 1.

2. Multiplicative Combination: In the second combination the refinement in-
dicator is obtained by a multiplicative combination of the RVS and flux jump
indicators. We can write this indicator as

Ee =
RV Se

maxe{RV Se} · ||[σn]||∂Ωe

maxe{||[σn]||∂Ωe
} (8)

We note here that this indicator is similar to the family of error estimators pro-
posed by Ranacher et al. [15, 16] for steady state problems. This indicator is
described as

||e||Ωe = ωe · ρe (9)

where ρe is an element residual computed using a locally enhanced approximation
and inter element flux jumps (see, for example, Akin [1]) and ωe is a suitable
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weight function – usually a local Greens function where pointwise error control
is a desired goal. Our multiplicative indicator can be interpreted in terms of this
estimator since the flux jump term is the major component of the residual and
the RVS quantity is viewed as the weight function of choice for this application.

3.4 ZZ-type indicator

This section outlines the implementation of a recovery indicator of Zienkewicz-Zhu
type. Let uh be a continuous piecewise linear function that is a finite element ap-
proximation of u on the domain of interest. Our goal is to calculate a continuous
piecewise linear vector function that will be an approximation to the gradient of u.
More, specifically, a recovery operator G is defined such that

G[uh] ≈ grad u

Let xm be a node of some element in the finite element triangulation Th. First, we
have to identify a patch Πm of elements having a vertex at xm, i.e.

Πm = {K ∈ Th : xm is a vertex of K}

Define zK as the barycenter of the element K. Let g be a vector function with linear
components defined on the patch Πm, i.e.

g(x) =

(
ax + by + c

Ax + By + C

)

Now we find the coefficients of g by calculating a least-squares fit to the gradient of uh

sampled at the baricenters of all elements in the patch Πm

g(x) = min
a,b,c,A,B,C

∑
K∈Πh

(g(zK) − grad u(zK))2

Then the value of G[uh] at the node xm is set to be

G[uh](xm) = g(xm)

Applying the above procedure to all nodes in the triangulation completes the construc-
tion of the recovery operator G[uh].

When the node xm lies on the boundary of the domain, we may not have enough
neighbor elements, i.e. the least squares fit may not be unique. In this case we enlarge
the patch by adding all elements that are neighbors to the neighbors.

First, we apply the recovery operator to obtain smooth stress fields. Then we
combine the components of the difference between the recovered stresses and the cor-
responding finite element approximations using a von Mises type approach and denote
that quantity by (σrecovered − σh)V M . A particular element is refined if

(σrecovered − σh)V M > 0.5 max
K∈Th

{
(σrecovered − σh)V M

∣∣∣
K

}
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where (σ)V M is defined as

σV M =
√

0.5 [(σx − σy)2 + (σx − σz)2 + (σy − σz)2] + 3(τ2
xy + τ2

xz + τ2
yz)

Another quantity that may be used in the refinement process is the “energy” norm
of the error on each element defined as

‖e‖2
K =

∫
K

(σrecovered − σh)(εrecovered − εh) dx

Again, we refine an element K if

‖e‖2
K > 0.5 max

K∈Th

{
‖e‖2

K

}

4 Adaptive Strategy

The goal of an adaptive strategy is to develop a new improved mesh based on error
indicator or other measure of solution quality. In the case of the hypervelocity impact
simulations where excessive deformations cause simulations to fail, we will attempt to
develop adaptive strategies that predict such behavior and create new elements and/or
reposition nodes and elements to avoid these problems. Additionally we would like
to control discretization error at a satisfactory level. However, at this time this is a
secondary goal.

4.1 Types of Refinement Allowed

We allow three basic types of refinement on the axisymmetric triangles that are used
to mesh our test problem. Since, the EPIC code lacks the ability to support hang-
ing/constrained nodes we have to produce a conforming mesh. This will lead to refine-
ments on elements adjoining the target element and beyond in a recursive fashion.

If the element to be refined and it’s neighbor both share their longest edge, it is a
simple matter to refine them both. We designate this type of refinement Type I(see
Fig. 3). If the element and its neighbor do not share the longest edge we allow the
refinement to propagate. We split the longest edge of the neighbor and enforce a split
on its neighbor. We then split the neighbor in three and original element in two. We
designate this refinement Type II (see Fig. 3). This simple restriction to only two levels
is indeed somewhat ad-hoc and enforced to keep the program complexity manageable
and reduces the needed data-structure support.

In the third type of refinement we split an element in 3 by joining its centroid to
each node. However, this type of refinement is unsuitable if the element being split
has a poor aspect ratio since the child elements have aspect ratios that are worse than
the parent element. We use this refinement only if the parent meets a stringent aspect
ratio criteria.
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Figure 3: Mesh Patches and types of refinement allowed

4.2 Types of Unrefinement Allowed

Removing elements to improve the geometry of remaining elements is a much more
complex operation. The classical way removing elements in a zone and replacing them
with a new local remesh called rezoning has been a part of EPIC and most such codes.
We experiment here with a a slightly different approach. We allow a few limited types
of local unrefinement where only elements and immediate neighbors are affected (see
Fig. 4). Unrefinement is triggered by the same element based measures as are used
for refinement. A more systematic unrefinement scheme where the size of patch to
unrefine is determined adaptively will be undertaken in future work.

4.3 Strategy

In the first strategy we use a simple fixed fraction refinement strategy. Element refine-
ment indicators in the top 20 or 30 % are refined after each 25% of total simulation
time. A better approach would be to trigger refinement after a certain value of the
error indicator is achieved. However, no reliable error measures are readily available.
We are currently developing more targeted refinement strategies [14] where the error
is spatially equidistributed and refinement is targeted to obtain a desired error level.

5 Results

We implement the above refinement indicators and adaptive strategies for a Taylor
impact simulation. This is a much studied classical problem in impact calculations.
In our first numerical test we shall use the RVS indicator and the above described
refinement strategy. We show a sequence of computations over a time period of 0.1E-
04 seconds for a cylindrical rod of iron striking a rigid surface. Figure 5 shows the
initial mesh and geometry. Figure 6 shows the deformed geometry and the values of
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Figure 4: Mesh Patches and types of unrefinement allowed

the refinement indicator and plastic strain distribution and the corresponding adapted
mesh at 0.1E-04 seconds. The strategy adds 32 nodes and 155 new elements. The
refinements are clearly focussed in the region where maximum element distortion is
experienced. However, the plots of plastic strain indicate that the highly strained re-
gion in the bottom outer zone of the cylinder does not have much refinement. In the
next test we use the flux jump indicator and the fixed fraction refinement strategy with
top 30% of the elements being refined. The computations are again carried out over
the same time period of 0.1E-04 seconds. Figure 7 show the results of this simulation.
Adapted meshes, contours of ||[|σn|]||∂Ωe

and plastic strain at at 0.03E-04,0.051E-04,
0.075E-04 and 0.1E-04 seconds are shown. In the third set of tests we use the addi-
tive hybrid indicator He with α = β = 1 indicators with a fixed fraction refinement
strategy with refinement triggered whenever He > 1. . The computations are again
carried out over the same time period of 0.1E-04 seconds. Figure 8 show the results of
this simulation. Adapted meshes, contours of ||[|σn|]||∂Ωe and plastic strain at 0.03E-
04,0.051E-04, 0.075E-04 and 0.1E-04 seconds are shown. This indicator and strategy
add 55 nodes and 201 elements. The refinements are now distributed more evenly. In
the fourth set of tests we use the hybrid indicator Ee indicators with a fixed fraction
refinement strategy with refinement triggered whenever Ee > 0.3 . The computations
are again carried out over the same time period of 0.1E-04 seconds. Figure 9 show the
results of this simulation. Adapted meshes, contours of ||[|σn|]||∂Ωe and plastic strain
at 0.03E-04,0.051E-04, 0.075E-04 and 0.1E-04 seconds are shown. In the next set of
results we investigate the performance of the ZZ type error indicator. Fig. 10 shows
the error indicators obtained.

Finally, we combine refinement and unrefinement and look at its effect on the aspect
ratios of elements. The average aspect ratios are now dramatically improved as seen
on Fig. 11. However, the minimum aspect ratio has not improved much.
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6 Conclusions and Future Work

In this report we have examined a few basic error indicators and adaptive strategies for
Lagrangian impact calculations. Preliminary results are encouraging and the approach
leads to improved meshes for the simulations. However, much remains to be done to use
these indicators and strategies for realistic impact simulations. Principal among the
tasks that need to be accomplished are creation of a dynamic data structure capable
of supporting creation and deletion of elements, implementation of mesh smoothing
and local remeshing algorithms to augment element refinement and coarsening, de-
velopment of more reliable error estimators as opposed to the simple error indicators
considered here, study of the interaction of adaptivity and different contact algorithms,
and integration of the mesh refinement, smoothing and remeshing and different types
of error indicators with an appropriate choice of technique based on values of different
indicators.
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Figure 5: Initial Mesh for cylindrical rod impacting rigid surface
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Figure 6: Mesh and contours of RVS and plastic strain for cylindrical rod impacting rigid
surface at time = 0.1E-04 after multiple adaptation cycles using RVS indicator.
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Figure 7: Mesh and contours of flux jump and plastic strain at time = 0.1E-04 for cylindrical
rod impacting rigid surface after multiple adaptation cycles using flux jump indicator.
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Figure 8: Mesh and contours of plastic strain, RVS and flux jump at time = 0.1E-04 for
cylindrical rod impacting rigid surface after multiple adaptation cycles using additive hybrid
indicator.
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Figure 9: Mesh and contours of error indicator, RVS and flux jump at time = 0.1E-04 for
cylindrical rod impacting rigid surface after multiple adaptation cycles using multiplicative
hybrid indicator.
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Figure 10: Contours of adapted mesh and energy associated with ZZ type error at time
0,225030E-04 and .300046E-04 sec.
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Figure 11: Aspect Ratios as the mesh is refined and unrefined


